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Chapter 3 

Experimental Error 



 

Overview 

 

 3-1 Significant Figures 

3-2 Significant Figures in Arithmetic 

3-3 Types of Error 

3-4 Propagation of Uncertainty from Random Error 

3-5 Propagation of Uncertainty from Systematic Error 

 



3-3: Experimental Error 

• Some laboratory errors are more obvious than 

others, but there is error associated with every 

measurement.  

 

• There is no way to measure the “true” value of 

anything.  

 

• The best we can do in a chemical analysis is to 

carefully apply a technique that experience tells us is 

reliable.  



3-3: Experimental Error 

• Repetition of one method of measurement several 

times tells us the precision (reproducibility) of the 

measurement.  

 

• If the results of measuring the same quantity by 

different methods agree with one another, then we 

become confident that the results are accurate, 

which means they are near the “true” value. 



Precision vs. accuracy 

Q.  Does small random error imply accuracy in an experimental  

     measurement? 

 

A.  The ability to reproduce a measurement does not make it  

     correct. 

 

 Definitions: 

 

    Accuracy 

   How close is the measured value to the ”true” value? 

 

       Precision 

  How reproducible (i.e., repeatable) is the result? 



precise and accurate 

precise but not accurate 

Precision vs. accuracy 



3-2: Significant Figures: 

Addition/Subtraction 

In addition and subtraction, the last significant figure is 

determined by the number with the fewest decimal 

places (when all exponents are equal).  

 

Example: 

 

   1.362  10-4 

+ 3.111  10-4 

   4.473  10-4 

 

 



3-2: Multiplication / Division 

Multiplication and division 

 

• The number of figures is limited by the factor with 

the smallest number of digits.  

 

Example: 

 

   34.60  

÷ 2.462 87 

   14.05 
 



3-2: Significant Figures: Logarithms 

Logarithm of a quantity 

• The number of figures in the mantissa should 

equal the number of significant figures in the 

quantity.  

• What is the pH of a solution that is 0.0255 M in H+?  

51.pH

figurestsignicican3]M0255.0log[pH

]Hlog[ pH

593



 

Matissa: Is the decimal part in the answer of a logarithmic operation.  

Example: Log 339 = 2.530. The integer part (2) is called the characteristic, while 

the decimal part (530) is called the mantissa.  



 

3-2: Rounding 

 
• Always retain more digits than necessary during a 

calculation and round off to the appropriate number of 

digits at the end.  

• Look at all the digits beyond the last place desired. 

- Round up if this number is more than halfway to the 

next higher digit.    121.794 806 4 is rounded to 121.795. 

- Round down if the insignificant figures is less than 

halfway.      121.7943 is rounded to 121.794. 

- Round to the nearest even digit if the number is 

exactly halfway.  

- 43.55 is rounded to 43.6 

- 43.45 is rounded to 43.4 



Experimental error 

 No analytical result is ever absolutely and completely 

certain.   Error 

 

                                systematic         random 

                             (determinate)  (indeterminate) 

                           

   constant    proportionate  

 

Systematic error refers to consistent error that appears each 

and every time a given measurement is made in the same 

way. 



3-3: Random and Systematic Errors 

• Random (indeterminate) error affects the precision 
(reproducibility) of a result. 

– Arises from uncontrolled (and uncontrollable) variables in 
the measurement.  

– Has an equal chance of being positive or negative.  

– Is always present and cannot be corrected. 

• Example: Random error associated with reading a scale. 



• Systematic (determinate) error affects the accuracy (nearness to 

the “true” value).  

– Arises from a flaw in equipment or the design of an 

experiment. 

– Reproducible. 

• Example: An incorrectly standardized pH meter. You think that 

the pH of the buffer used to standardize the meter is 7.00, but it is 

really 7.08. Then all your pH readings will be 0.08 pH unit too low.  

pH reading of 5.60 is actually 5.68.  

• With diligence, systematic error can be discovered and 

eliminated, but some random error is always present.  

• We strive to eliminate systematic errors in all measurements.  

 

3-3: Random and Systematic Errors 



systematic error 

random error 

Random vs. Systematic Error 



Sources of systematic error 

• Improper experimental design (“procedural” errors) 

 

• Improper calibration of the experimental apparatus 

 

             Result:  Data are systematically skewed.  

                           Reduced accuracy 

 

 

In principal at least, the source of a systematic error can 

be identified and the error eliminated. 

 



3-3: Detecting Systematic Error 

1. Analyze a known sample, such as a certified reference 

material. 

2. Analyze blank samples containing no analyte being 

sought. If you observe a nonzero result, your method 

responds to more than you intend.  

3. Use different analytical methods to measure the same 

quantity. If results do not agree, there is error in one (or 

more) of the methods. 

4. Round robin experiment: Different people in several 

laboratories analyze identical samples by the same or 

different methods. 

5. Disagreement beyond the estimated random error is 

systematic error. 



Detection of systematic error 

• Analysis of a “known” sample 

 

       National Institute of Standards and Technology (NIST) 

     “Standard Reference Materials” (SRMs) 

 

•  Analysis of a blank sample 

 

         Blank   Sample containing no analyte  

 

       Expected:     No analyte               No response 

 

              If…        No analyte               Non-zero response 

 

             Then…     Possible problem with method! 



Detection of systematic error (cont’d)  

• Analysis of same sample by multiple analytical methods 

 

       Poor agreement implies an error in one (or more) of the 
techniques employed. 

 

• “Round Robin” experiments 

 

       Identical sample is analyzed by same (or several) methods in 
multiple laboratories by multiple analysts. 

 
       Disagreement exceeding random error indicates systematic 

error. 

 

• Varying the sample size 

 

       Sample size reduction can make the presence of a constant 
systematic error more apparent.   

   



Sources of random error 

• Fluctuations in quantity measured 

 

• Limitations on our ability to make physical measurements 

in a consistent way 

 

     Why are we limited? 

 

  Fluctuations in the behavior of measuring instrument  

 with changing experimental conditions 

 

  Inability to control variations in experimental conditions 

 (e.g., random electrical noise). 

    

 



Sources of random error (cont’d) 

• Operator subjectivity 

 

A given operator making the same measurement 

repeatedly over a period of time will likely generate a 

data set comprising a random collection of values 

scattered about the true value, some higher, some 

lower. 

 

      Unlike systematic error, random error cannot be 

eliminated. 

  

If all systematic error were eliminated, there would still be 

uncertainty in the experimental measurement. 



3-3: Uncertainties for Random Errors  

• We can usually estimate or measure the random error 

associated with a measurement, such as the length of 

an object or the temperature of a solution.  

 

• Express as the standard deviation, standard deviation 

of the mean, or a confidence interval, which we will 

discuss in Chapter 4.  

 

• We assume that systematic error has been detected 

and corrected. 



3-4: Propagation of Uncertainties  

from Random Errors  

Data treatment in many experiments involves arithmetic 

operations on several numbers, each of which has some 

uncertainty associated with it. 

 

           Total random error ≠ sum of individual errors. 

 

      Why? 

 

Because random error has an equal chance of be positive 

or negative, some error cancellation is to be expected. 



3-4: Propagation of Uncertainties  

For random errors, propagation of uncertainty in addition 

and subtraction requires absolute uncertainties. 

 

 

 

Multiplication and division utilize relative uncertainties. 

 

                  % 

 

 

Other rules for propagation of random error are found in 

Table 3-1,  

2
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3-4: Propagation of Uncertainties  



Addition & Subtraction 



Multiplication and Division 

Ex.  What is the most probable uncertainty for this computation? 

 

     1.76 (± 0.03)  x 1.89 (± 0.02) ÷ 0.59 (± 0.02) = 5.64 ± ??    e4     

                      e1                      e2                   e3    

         

        Relative uncertainty,   %e4 = [(%e1)
2 + (%e2)

2 + (%e3)
2]½ 

 

                   Here, %e4  =  [(1.7)
2 + (1.1)

2 + (3.4)
2]½ = 4.0% 

 

      Absolute uncertainty = 5.64 x 4.0% = 5.64 x 0.040 = 0.23 

 

   Answer is 5.64 ± 0.23 or, after dropping insignificant digits: 

 

                   5.6 ± 0.2  

                                    
 



3-4:Propagation of Uncertainty 



3-4:Propagation of Uncertainty 



3-4: The Real Rule on Significant Figures 

The real rule: The first uncertain figure is the last significant 

figure. 

 

 

 

 

• The quotient above is expressed with four figures even 

though the dividend and divisor each have three figures. 

)004.0(022.1
0.002)0.803(

 0.002)0.821(








 
3-5: Propagation of Systematic Error 

 
• Systematic error occurs in some common situations 

(molecular mass and volumetric glassware calculations). 

• It is treated differently from random error in arithmetic 

operations.  

• For systematic uncertainty, we add the uncertainties of 

each term in a sum or difference. 

 

• Systematic error in the mass of n atoms of one element 

is n times the uncertainty in mass of that element.  

• Uncertainty in the mass of a molecule with several 

elements is computed from the sum of squares of the 

systematic uncertainty for each element. 



3-5: Propagation of Systematic Error:  

Molecular Mass  

Uncertainty in molecular mass of O2 

• The mass of O2 is somewhere in the range 31.998 8 ± 

0.000 8  g/mol.  

• The uncertainty in the mass of n atoms is 

     n  (uncertainty of one atom) = 2  (± 0.000 8) = ± 0.0016  

 

The uncertainty is not  

 

For systematic uncertainty, we add the uncertainties of each 

term in a sum or difference. 

1
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3-5: Propagation of Systematic Error –  

Volume Delivered 

 
• A 25-mL Class A volumetric pipet is certified to deliver 

25.00 ± 0.03 mL. 

• The volume delivered is in the range 24.97 to 25.03 mL. If 

you use the uncalibrated pipet four times to deliver a total 

of 100 mL, what is the uncertainty in 100 mL?  

• The uncertainty is a systematic error, so the uncertainty in 

four pipet volumes is ± 4  (0.03) =  ± 0.12 mL, not 

 

 

• The difference between 25.00 mL and the actual volume 

delivered is a systematic error. It is always the same. 

• Calibration of the pipet eliminates systematic error. 

06.0)03.0()03.0()03.0()03.0( 2222 



 
3-5:Calibration Removes Systematic 

Error 

 • If a calibrated pipet delivers a mean volume of 24.991 mL 

with an uncertainty of ± 0.006 mL, and you deliver four 

aliquots, the volume delivered is 4  24.991 = 99.964 mL 

and the uncertainty is ± 0.0012 mL. 

mL0012.0 e
)006.0()006.0()006.0()006.0( e

 vol.del.

2222
 vol.del.


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• For an uncalibrated pipet, the uncertainty is ± 4  

0.03 = 0.12 mL because it is a systematic uncertainty. 

Calibrated pipet volume = 99.964 ± 0.012 mL 

Uncalibrated pipet volume = 100.00 ± 0.12 mL 


